《《勾股定理》說課稿》這是優秀的教學設計文章,希望可以對您的學習工作中帶來幫助!
一、教學目標
1.了解勾股定理的不同證明方法,理解勾股定理內容并能夠應用公式解決實際問題。
2.通過小組合作學習探究數學定理的證明過程,在過程中了解數學中的數形結合思想。
3.提高數學素養能力,并在學習中感受數學的樂趣和魅力。
二、教學重難點
重點:勾股定理的內容及應用。
難點:勾股定理的證明。
三、教學過程
(一)導入新課
1.在一般三角形當中,三條邊存在什么樣的關系呢?
學生自由回答,兩邊之和大于第三邊,兩邊之差小于第三邊。
2.那么在特殊的三角形即直角三角形當中三邊還會存在什么特殊的數量關系呢?(板書一個直角三角形,兩直角邊分別為a、b,斜邊為c。)
引入課題,勾股定理。
(二)提出原理
(1)大屏幕展示畢達哥拉斯發現勾股定理時的地磚圖案,給出不同的類型,請學生觀察,小組合作(采用拼補或者數方格的方式)填寫如下表格:
(2)大膽猜想
根據表格數據結果小組內交流探究,大膽猜想在直角三角形當中三邊存在什么樣的數量關系?
引導回答,在直角三角形中,兩直角邊的平方和等于斜邊的平方。
(3)嚴謹證明
大屏幕出示“趙爽弦圖”,簡單講解,早在我國漢代就有人證明了這一猜想,及這就是今天所要學習的勾股定理。
同學觀察,互動方式說出圖形的特點,有四個全等的直角三角形及一個正方形,請學生隨意裁出四個全等的直角三角形,按照課本圖例拼成一個大正方形,計算此正方形的面積,并嘗試進行證明勾股定理。(設置巡視即教師指導環節)
請學生代表上臺板演計算過程:大正方形面積=
師生共同總結:對任意一個直角三角形都有兩直角邊的平方和等于斜邊的平方。
(三)講解原理
按照板書上的直角三角形,指出直角邊和斜邊,向學生講解核心內容:
1.強調a,b,c的含義
2.勾股定理的應用前提——在直角三角形中
3.其他應用,在直角三角形中指導任意兩邊即可求出余下一邊的長度。
(可以進行簡單提問,引出核心內容,加強學生地理解和記憶)
(四)應用原理
1.基礎練習
在直角三角形ABC中,角C為90°,AC=6,AB=10,求出BC的大小。
2.綜合練習
在直角三角形ABC中,角C為90°,BC=3,AB=5,求三角形ABC的周長及面積。
(五)小結作業
教師引導學生回顧本節課所學的主要內容,通過相互交流分享觀點:
1.什么是勾股定理?
2.勾股定理的應用前提以及公式
3.能夠解決哪類的實際問題?
作業:課后作業題,找一找有哪些勾股數,下節課分享。
《勾股定理》說課稿這篇文章共3006字。
相關文章
《初中語文說課教學競賽一等獎8篇》:第1篇初中語文說課教學競賽一等獎 教學目標: 1、了解古代聰穎機智的少年兒童的故事,學習古人的智慧、誠實、守信、尊重他人的美德?! ?、了解劉義慶和《世說新語》?! ?、閱讀淺易文言文,積累常見的文言詞語,能
《琵琶行教學設計一等獎8篇》:第1篇琵琶行教學設計一等獎 1。教學設計,選好角度?!杜眯小肥悄捴巳丝诘膫鹘y名篇,過去教學很多是以教師講解分析為主代替學生的感悟閱讀,學生的學習非常被動。我教這一堂課,改變了教學的角度,選擇了這樣一個突破口:把